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FOREWORD

This report consists of the secend phase of an analytical program
to provide fundamental solutions to the non-uniform flow fields of wing-
propeller aerodynamics, This program was originated by Dr, Scott
Rethorst as an extension of his basic lifting surface solution obtained in
an earlier study conducted at the Celifornia Institute of Technology. (1

The program was formulated so that the effects of primary variables
such as wing plan form were first determined, The analysis is then
extended in order of increasing complexity to enhance its generality and
to encompass secondary features, Each phase of the program establishes
the foundation for the succeeding phases in an orderly growth pattern,

The following four phases constitute the basic analytical portion of this
program:

l. Single Jet Theory - The Rethorst analysis of Ref, 1

was applied to an extensive systematic spectrum of 437 wings, Optimum

(2)

finite wing planforms were determined,

2, Multiple Jet Theory - The single jet theory is further

generalized and applied to the case of multiple jets, The effect of slip-
stream rotation is also included. (Present Report),

3. High Angle of Attack Theory - The generalized theory

is applied to analyses of (1) wings located at various heights in the jet,
(2) highly cambered wings as used in deflected slipstream V/STOL con-
cepts, and (3) tilt wing configurations where the jet is at an angle to the
(3)

free stream flow,

4, OSeparated Flow Theory - Hydrodynamic cavitation theory




is used to determine the separated flow field incurred during the transi-
tional flight of V/STOL aircraft, (4!

The original Rethorst analvsis of a wing extending through a single
jet as used in Phase 1 employs an infinitesimal vortex element, which
early in the analysis was integrated over a finite span element, The
wing was then represented by a series of such finite spanwise horseshoe
vortex elements,

Each such horseshoe vortex element was then split into components
which were even and odd with respect to the direction of flow, The flow
field due to the two dimensional even component was found in a straight-
forward algebraic manner, The flow field due to the three dimensional
odd component is quite complex, involving infinite sums of infinite integrals
of Bessel functions, Electronic data processing equipment is necessary
for evaluation of these quadratures,

The present paper, in extending the Rethorst analysis to multiple
jets, introduces four further significant refinements, First, the infinitesi-
mal vortex elements are retained throughout the analysis, delaying the
integration over the span until a final step, This technique simplifies
the analysis and improves the accuracy of the results, Second, the sym-
metry restrictions have been removed so that more generalized geometries
may be analyzed, Third, the odd component has been further partitioned
into a simple algebraic component plus a complex remainder containing
all of the Bessel function terms, If this remainder can be bounded and
shown to be small enough to be disregarded, even in certain special cases,
a major saving in computation will be achieved, Fourth, the effects of

slipstream rotation have been included as a super-imposed element,




SUMMARY

The basic Relhorst lifting surface solution of a wing extending
through a single jet was generalized to enhance its applicability to the
solution of many general and secondary problems concerned with the
non-uniform aerodynamics of wing-propeller interaction. The general-
ization is first developed in detail in terms of single jet theory. Then
it is applied to multi-jet arrangements.

Several significant refinements to the original Rethorst theory
are introduced. The wing is represented by a distribution of infinitesi-
mal vortex elements instead of a large but finite number of horseshoe
vortices. Certain symmetry restrictions are removed and the effect
of slipstream rotation is included.

The spanwise lift distribution of an example multi-jet arrange-
ment was determined. Large increases in lift inboard and within the
jets were obtained when the free stream velocity was sn.all compared
to the jet velocity. A lesser but significant increase occurred outboard
of the jets.

This large lift magnification offers the potential of large irn-‘
provements in STOL capabilities and warrants a further computational

effort which is presently being conducted.
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I, INTRODUCTION

The problem of the spanwise lift distribution on a wing of finite
aspect-ratio extending through a central jet slipstream has been investi-
gated by several authors, Koning(s) first trecated this problem, using the
lifting line theory together with certain simplifying assumptions, In
Koning's work, the slipstream is taken to be a circular jet of air moving
with a uniform velocity parallel to the main stream, The distortion of
the slipstream due to the presence of the wing is assumed to be small
so that the boundary conditions on the jet boundary may be applied, by
linearization, at its undisturbed position, Furthermore, the difference
between the jet velocity and the main flow velocity is assumed small;
this limitation was introduced primarily to simplify the method of
calculation used by Koning. Recently Koning's theory has been extended
to render results valid for all jet velocities (with the other original
assumptions retained) by Graham, Lagerstrom, Licher and Beane.(é).

The lift distribution along a wing of finite span with a central

(7)

jet has been calculated by Squire and Chester' ', using the lifting line
theory tcgether with a rather elaborate expansion of the circulation
distribution along the wing, Although the lifting line approximation
well represents a wing of high aspect-ratio in a uniform main flow,
the same approximation adapted to the present problem will further
require that the slipstream diameter be large compared with the wing
chord, In practice, however, the slipstream diameter and the chord

are usually of the same order in magnitude, The applicability of the

lifting line theory is therefore not well established,



On the other hand, if the slipstream diameter is small compared
with the wing chord, the lift increase due to the jet effect is produced
mainly over a low aspect-ratio surface, namely the portion of the wing
in the jet and its immediate neighborhood, This special case has been
treated by applying the slender body theory in Ref, 6, In this theory the
basic velocity potential ¢B of the wing alone without the jet is considered
as known and the jet perturbation potential A¢ = ¢ - qu is assumed to
satisfy the slender body approximations; the problem of A¢ is then
solved with the effect of finite aspect-ratio on A¢ neglected,

Judging from the different assumptions inherent in these two
theories, it is expected that the lifting line theory will be valid for large
values of the ratio of jet diameter to wing chord, whereas the slender
body theory will be valid for small values of this ratio, In order to as-
certain the range of validity of these two theories, their results have
been compared in Ref, 6 for a particular example (a wing with sinusoidally
varying incidence along the span, extending through a plane-sided free
jet of finite width and infinite height) with the result of a third method,
namely the approximate lifting surface theory of Weissinger(B).

The comparison shows that, at least for this particular case, the
slender body theory is in good agreement with the lifting surface theory
when the jet width is less than the wing chord, The lifting line theory
is inadequate in this range of width-to-chord ratio, but in the limit tends
to the Weissinger theory for large values of this ratio (about 10 or larger),
While this finding indicates the range of validity of the two limiting theories

in this special case, their respective ranges of validity in the general




case, however, are not definitely established, as indicated by the com-

parison (given below) of their results with the existing experimental data,
For the general case it seems evident that some kind of lifting

surface theory would be required to describe properly the actual flow,

(1)

Based on this point of view, Rethorst'’ treated the original Koning
problem by using the Weissinger approximation. In this analysis, the
wing is represented by a large number of horseshoe vortices, which

are obtained by integration of an infinitesimal vortex over a small but
finite span element. The problem is then solved by the finite step method,
To avoid the difficulties encountered in evaluating the convergence of the
solution at the jet boundary, no vortex is chosen to stride across the

jet boundary, This arrangement simplifies the boundary condition on

the downwash at the intersection of the jet boundary and the wing., The
lift distribution given by Rethorst's theory is shown to lie between the
two limiting theories(l). This theory of Rethorst has been subsequently
applied to compute various flow quantities for a wide range of the velocity
ratio (main stream velocity to jet velocity) and the ratio of jet diameter
to chord; the results are reported in Ref, 2.

There are only a few experimental results on this slipstream
problem., A series of experiments were conducted by Smelt and Davies(g),
using a rectangular wing held at an incidence of 6, 6 degrees, and with
the propeller axis parallel to the main flow, Only the aerodynamic forces
on the wing itself were measured, Compared with this set of experiments,
the lift increment predicted by the slender body theory is about 30% lower
(6)

than the experimental value' ', whereas the lift increment given by the




lifting line theory is more than double the experimental data,

(10)

In a set of experiments carried out by Stuper' " °, the spanwise

lift distribution on a rectangular wing was measured at two angles of
attack, A specially designed propeller was used to produce a jet with
nearly uniform velocity distribution and without rotation, A comparison(l)
shows that the experimental lift distribution of Stuper lies between the
two limiting theories, whereas Rethorst's theory is found in substantial
agreement with the experiment within the jet, Outside the jet, the
correlation is obscured by the use of an upstream duct in Stuper's experi-
ment,

Another experimental study of this problem was made recently
by Brenckman(n). It was found that within a range of moderate wing
incidences, a substantial part of the lift increment produced by the slip-
stream is attributed to a destalling or boundary-layer-control effect,
With this part of the lift increment deducted, the remaining part was
founa in good agreement with the slender body theory, The slipstream
velocity profile (deviation from a uniform distribution), rotation, and
deformation (from its original circular shape) were claimed to be of
secondary importance, However, no apparent atternpt was mentioned
in Brenckman's investigation to examine the case when the angle of
attack is so small that the destalling effect is practically absent, and
to examine the other ranges of the chord-to-diameter ratio., Thus it
seems that further experimental investigation of these points would be

required in order to provide a more sound basis for comparison between

the different theories and experiments,




More recently an extensive experimental investigation of the
slipstream problem was undertaken at Princeton University, Department
of Aeronautical Engineering, The first report of this work is on finite
spans(lz) and produced experimental data that was in close agreement

with the Rethnrst theory,
A further recent Princeton report on this program dealt with
infinite aspect ratio wings“3). The Rethorst formulation again proved
to yield the best correlation with experimental results,
This Princeton program provides substantial experimental evi-
dence of the validity of the present theoretical program, particularly
the first phase based on Rethorst's work, This favorable correlation
lends encouragement to the present generalization of this initial effort,
The present study is concerned mainly with the generalization
of the Rethorst lifting surface theory so that the analysis may be more
readily applied to an extensive set of general problems, such as multiple
jets, slipstream rotation, ground effect, and the optimum wing form
for total lift, The first two problems are solved in the present paper,
Because the Weissinger method is less time-consuming than other
more elaborate lifting surface theories, it is adopted here as a first ap-
proximation to the lifting surface theory. In order to simplify the analysis
and to improve the accuracy of the results, the wing is represented by
a piece-wise continuous distribution of circulation I', which may admit
a step-jump only at the jet boundaries, The circulation distribution TI'
is further expressed by different Fourier series in different regions

(inside and outside the jets) over the wing, With this expansion of I'" the




condition that the downwash at the jet boundaries must be bounded can
easily be enforced., The first few Fourier coefficients are determined
by applying a number of boundary conditions at approximate points on
the wing.

The case of a single jet is first considered in detail; the analysis
is then generalized to the case of multiple jets, The effect of the slip-

stream rotation is accounted for in an approximate manner,




II, ANALYSIS

A. GENERAL FORMULATION

In this analytical treatment of the effect of a number of slip-
streams on the spanwise lift distribution over a wing, the following
simplifying assumptions are introduced. Each slipstream is taken to
be a jet of air which has a circular cross section and has its central
axis parallel to the main stream surrounding the jets. To begin with,
the slipstreams are assumed to have no rotation about their axes; the
effect of small slipstream rotation will be approximately estimated
later in the analysis. Thus the slipstream velocity and the main stream
velocity are assumed to be originally uniform and constant, equal to Vj
and Vo respectively. In this analysis the quantity (VJ.— Vo)/(Vj+ Vo)
need not be limited to be small. When Vj >> Vo’ the effect of the slip-
streams becomes predominant; consequently the assumption that the
slipstreams are parallel to the main stream becomes less important
and may thereby be relaxed to some extent. It may also be noted that
for V.>> Vo the mixing region at the jet boundary due to the viscous
effect will become appreciable; this real fluid effect, however, will be
neglected. I* should be mentioned that, as pointed out by Brenckman(ll),
a substantial part of the lift increment at moderate incident angles pro-
duced by the slipstream is attributed to a "destalling" effect which reduces
the flow separation on account of the high velocity slipstream. This point
of view would seem to require some kind of new or modified analysis,
presumably with the use of the free streamline theory to represent the

separated flow, Within the present framework, however, the flow is




assumed to be free from separation

The flow is assumed to be incompressible and nonviscous, hence it pos-
scsses a velocity potential inside and outside the jet, though the potential
need not be continuous at the jet boundary. The jet boundary may be regarded
as a vortex sheet separating the inside and outside flow. The only other
singularities are the vortex elements representing the wing and the trail-
ing vortex sheet shed from the wing. The disturbances produced by the
wing are assuma2d to fall off far away from the wing except, of course,
along its trailing vortex sheet.

Before the analysis is extended to the case of multiple jets, we
consider first the case of a single circular jet, with its radius normalized
to unity for simplicity. The jet axis is taken to be the x-axis, directed
along the main flow and centered at the wing chord. The wing extends
through the jet, spanning from y =-b; to y = +b, (by by > 1, see Fig. 1).
The z-axis is taken to point upward. The ratio between the main stream

velocity V and the jet velocity Vj will be denoted by
p=Vo/Vj, O<spusl., (1)

The perturbation velocity potential outside and inside the jet will be de-

noted by @, and ng. so that the total velocity will be respectively
+ grad ?; (2)

where 1 1is a unit vector along the x-axis. In their respective flow

regions ¢ and ¢j satisfy the Laplace equation

Vi =0, Ve, =0 . (3)

0

The distortion of the slipstream by the wing is assumed small so that




by linearization, the conditions on the jet boundary may be applied on
the original circular free boundary. There are two boundary conditions
at the jet boundary. One of them is dynamic in nature, stating that the

pressure must be continuous at the jet boundary; that is, (5)

Q5= Ko, on T = (e B2 oy (4)

The other condition, kinematic in nature, expresses that the inside and

outside flow must be tangential to each other at the boundary, that is,
quo/ar = paqu/ar on r=1 . (5)

The boundary conditions on the trailing vortex sheet of the wing will be
described below (immediately after Eq. 6), and the boundary condition
on the lifting surface representing the wing will be given later in this

analysis (see Section B4),

In order to generalize the analysis and to improve its accuracy
for subsequent numerical computations, the wing will be represented by
a distribution of infinitesimal vortex elements instead of a number of
finite horseshoe vortices as in Ref, 1, Let us first consider an infinitesi-
mal element of bound vortex of strength I(n)6n centered at x =0, y=1,
z = 0, and extending over a line element &n along the y-axis, the free
stream being everywhere uniform, of velocity V in the positive x-direc-
tion, The trailing vortex sheet of this bound vortex element lies approxi-
mately in the region x > 0, n-6n/2<y<n+6n/2, z=0, The solution

of this problem is well known (e, g, see Ref, 14); it may be expressed as

bp =8¢+ 8¢, =—i—,; T(n)én[ Fy(y-n, 2) + F,(x, y-n, z)], (6a)




where

F\(y, 2) = 7:—; (6b)
X
dg [
Fo(x,y,2) = ZS‘
2 5 (gz+yz+zz)3/2
5 = > . (6c)

y2+ :;z (x2+ y2+ 7.2)172

This solution is seen to satisfy the Laplace equation and to have the fol-
lowing properties:
ls Across the trailing vortex sheet |y-'q! < 81/2,
x >0, z = 0, the potential 6p has a jump
bo(x,y,04) - do(x,y,0-) = I'(n)én, and 6¢(x,y,0) =0
elsewhere,
2, Across the trailing vortex sheet éq)x, 6(pz are
continuous and 6(py may be discontinuous, but

2 . .
)~ 1s continuous,

3, 8¢ =0 as x2 + y2 + zz—' oo except over the

6
(cpy

vortex sheet,

Here 6¢ is conveniently decomposed into two parts, 6(p1 and
6(p2. The part 6(;)1 is independent of x, and will be called the two-di-
mensional part of the potential. The part 6(p2 is a function which is
odd in x and z, but even in (y-7m), and will be called the three-dimen-
sional part of the potential. The whole part 6¢p may be regarded as the
fundamental solution of a vortex element, and is useful in constructing
the solution of more complicated boundary value problems. By using

this fundamental solution, the velocity field generated by a distribution

10




of circulation I'(y) along the wing span (-b1< y < bZ) under the influence
of a single jet can readily be calculated; this is given in the next section,
This result will be further generalized to the case of multiple jets.
Finally, the approximate lifting surface theory of Weissinger will be
applied by taking one or more of such lifting lines appropriately dis-
tributed over the wing surface to represent the wing together with ap-
propriate boundary conditions to ensure that the wing remains a rigid

surface,

B. SINGLE JET THEORY

l. The Velocity Potential of a Lifting Line Extending through a

Single Jet

We shall first derive from the above fundamental solution Eq. (6)
the velocity potential of an infinitesimal bound vortex of strength T'(n)én
placed at (0, n, 0) in the presence of a single jet with its boundary at
r = 1. This solution may further be regarded as the fundamental solution,
or the Green's function, of the wing-jet interference problem. It turns
out that the determination of this Green's function depends on whether
the vortex element is located inside or outside the jet slipstream. The
velocity potential of a whole lifting line extending through the jet can
then be obtained by superposition of this Green's function. We shall con-
sider the two-dimensional and the three-dimensional part of the solution

separately.

a, Two-dimensional Part of the Velocity Potential

The two-dimensional part of the velocity potential can be

readily derived from Eq. (6) by making use of the simple reflection into

11




the circular jet boundary, as given in Koning's theory(s). The following

two different cases must be distinguished.

> 1, the Vortex Element is located Qutside

(1) |n

the Slipstream

In this case it can be shown that the velocity potential
outside the jet is due to the original vortex of strength I'(n)én at y = ¢
plus an image vortex of strength (1 - pz)(l + pz)-ln-zr‘(n)én at y =1/
(which is inside the jet), On the other hand, the velocity potential inside
the jet is due to an equivalent vortex of strength 2u(l + pz)_lr‘(n)én located

at the original position y = n, For brevity we write
e =(- /et e = wHae ), (7)
which also satisfy the relations
(L-€,) = (1-€)/w=mul+e) (7a)

Then

€
1 1 1
69 =7 T(n)on{F)(y-n, 2) + . Fily- 5.2} forr>1,
(8)

1
= ﬁf(n)én(l = (:Z)Fl(y-n, z) for r <1,

where r = (y2+ zz)l/2 and Fl(y, z) is given by (6b). That this solution
satisfies conditions (4) and (5) is readily verified by direct substitution.
In the above expression the terms with € and €, represent the effect
of the slipstream on 6(p1 outside and inside the jet respectively, If the

value of I'(n) is given, then it is seen at once from (8) that for a vortex

12




element located outside the jet, the effect of the slipstream is to increase

(¢, outside the jet and to decrease @, inside the jet.

(2) |n| <1, the Vortex Element is located Inside the

Sligstream

In this case it can also be shown that the velocity
potential outside the jet is due to an equivalent vortex of strength {I - EZ)P(n)6n

n, and the potential inside the jet is due to the original vortex

1}

located at vy

T'(n)én at y =mn plus an image vortex of strength -eln-zl"(n)én located

at y =1/n (which is outside the jet). That is

1
G(pl = In T(ﬂ)5ﬂ(1'5 Z)Fl(y-n’ Z) forr > 1],

€
1
=7}ﬁ1‘(n)6n{F1(y-n. z)- ?Fl(y- %, z)} forr <L

(9)

This solution also satisfies conditions (4) and (5), as is readily verified.
The effect of the jet slipstream is now to decrease the value of @1 both

outside and inside the jet for fixed T.

The system of equations (8) and (9) represents the two-dimension-
al part of the Green's function of the wing-jet problem. For a lifting
vortex line of a given circulation distribution T(y) extending from
y = -b1 to y = bZ’ the two-dimensional part of the velocity potential
can be obtained, as the problem is evidently linear, by integrating (8)
and (9) along the lifting line with the contributions in different regions

kept in order. Thus we have

b 1
2 AT
47{(0]_ = S\ b F(TIIL‘ 1(Y"'nr z)dn - 625‘ lr('ﬂ)Fl(Y"m Z)dﬂ
-by - .

-1 eb, . ) 4
+e1(§ o )I‘(n)Fl(.y-——,Z)-—g forr>1  (10a)
n

-bl 1 M

13




b2 -1 b2
47T(p1 = 5 F(T])Fl(y"q, z)dn - € 2 (5 + Sv )I‘(n)Fl(Y'T]. z)dn
-b -b 1
1 1

1
1 d
- ElS.l T(n)F,(y- = z) ;g for r < L. (10b)

b, Three-dimensional Part of the Velocity Potential

It has been found that the three-dimensional part of the velocity

potential in the presence of a jet slipstream cannot be expressed in terms
of the simple image system alone as for the two-dimensional part. How-
ever, by introducing the same image system as that of @, to one part
of P and by leaving the remaining part of @, to be determined, the

analysis can be somewhat simplified. We proceed as follows,

1. n| >1, with the Vortex Element located Outside

the Jet

In this case we write @, in the form which contains

partly the same image system as that of (8) as follows

€
1 1 1 !
6(,02 :ﬁ T(ﬂ)aﬂ{Fz(X, Y= Z) h T?’ Fz(xr y- ﬁ: Z)+ QDO}

for r > 1, (1la)

i
= o T(n)Bn {(1-€ ,)F (%, y-n, 2) 4 0;) forr <1,  (ilb)
1
in which F, is defined in (6c) and ¢ and q); satisfy the Laplace

equation and are to be determined by using conditions (4) and (5). For
this purpose it is convenient to write the Laplace equation in polar

coordinates (r,6,x) with r = (y2+ zz)l/2 and 6 = arctan (z/y), so that
2 ! t 2 1 2 1
_%a +%-3r +_12 —‘g—a +——‘£2-8- =0 (12)
or r- 960 %’

14




1
where (p' =g, for r>1 and (p| = (p;i for r <l. Substituting (l11) into
conditions (4) and (5), and using the integral representation of F2 given

!
in (6c), one obtains two boundary conditions for ¢ as follows

sin 0 d§ (13)

1 1 Inlx
(p; - po,) = p€ S\ )
) ©r=l Ly (§2+n2-2ncos 6+].)3/Z

<8(p0-“8(p> =e{ x sin 0
BT o N U (x%4nP-2ncos 841)°7°

»lnlxa
i n sin 6 dg} . (14)
Sx T"[(g +n -2ncos 9+1) /2]

The above integrals can easily be integrated. By doing so, one may
1
readily see that conditions (13) and (14) show that ¢  has the following

behavior

qpl = O(lx|) as x ~ 0, and (p' =O(x_2) as |x| - oo.

Hence q)' and its derivatives will be small both near x =0 and |x| = co.
This result exhibits the advantage of expressing @, in the form (11),
with the simple image system first singled out. Furthermore, (13) and
(14) indicate that (p' will be a function odd in both x and 6. It therefore

I
follows that ¢ must be of the following form, which is readily verified

to be a solution of (12),

® 0 0]
i _ 1 _ 2 . (o)
¢ =@, =7 gin nb 50 S, (k, n)Kn(kr)sinkx dk for r > 1, (l5a)
n=1
[0 0]
= .72;2 sin nOS' s(J (k n)I_{kr) sin kx dk  forr<1, (I5h)
0
n=1

15




where In and Kn are the modified Bessel functions of the first and
second kind, S$10) and Sg) are arbitrary functions of k and n. The
functions K ~are chosen for r>1 and I for r <1 so that (p; and
(p; will be regular respectively at r = 0 and r = 0. The super-indices
(o) and (j) of S denote the regions (outside or inside the jet) with which
S is associated; this notation is convenient for extending the analysis to
the case of multiple jets.

To facilitate the determination of Sflo) and Sflj), it is convenient

to express conditions (13) and (14) also in terms of Fourier-Bessel inte-

grals. By using the relations (which can be deduced from the results on

p. 388 of Ref. 15)

[0 0]
o~ 373 =—721'5‘ Ko[k(nz-chosen)l/Z] s (lxpk,aks
(x“41n"-2ncos 0 +1) 0
(16a)
S\Inlx at
i (§2+n2-2n cos 8+1)3/‘2
k
=ﬁ§0 —x— dk k/lnltKo[t(n -chos9+1)/ ]dt, (16b)

and the addition theorem (see Ref.15, p. 361)

sin 0 Ko[ t(nZ—Zn cos 6+l)1/2]

o)
=Z[In_1(t)Kn_l(nt)— In+1(t)Kn+1(nt)] sinn® for [nl> 1, (17a)
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together with the integral (which can be verified by differentiation)

S‘[ I _(at)K__(bt)- In+1(at)Kn+1(bt)] t dt

= - 22 1 (at)K (bt), (18)

one finds by straightforward calculation that (13) and (14) can be written

{ i-u l)
CPJ (porzl
e, O 'Ok sin kx
-+ Zlnsmnego [In(-ﬁ)Kn(k)-In(k)Kn(kn)]—R—-—dk, (19)
n=

0 0]
oo 1 1
=—1§nsinn6§ [In(-l-;-)Kn(k)Hn(k)Kn(kn)] sinkxdk,  (20)

! !
where In and Kn denote the derivatives of In and Kn with respect to

their arguments,

A remark should be made here with regard Ito the argument of the
Bessel functions when it becomes negative. Since the right-hand sides
of (13), (14) and the left side of (17) are not changed if n is replaced
by (-n) and 6 by (7-6), the right side of (17a) and (17b) is also unchanged
under the same transformation, Therefore we may adopt for the purpose

of later calculation the conventions
_ n RN !
K (-2) = (-)"K (2), I (-z) = (-)"I (2), (21)

which are consistent at least for the present analysis.

17




Now application of conditions (19) and (20) to (15) yields

!

2kI_1_K_(kn)

51 )k,m) =e1$§{ e Nl In(}—‘)} , (22a)
1-€ k(I K +K I ) n

nn nn

1 t
2n [ InKn t KnIn] Kn(kn)

sV, m) = € (1-¢ ) 22 (220)

T !
1-€ lk(InKn + KnIn)

In these equations, for those Bessel functions whose argument is k,
the argument is omitted for brevity. Thus, Egs. (1), (15) and (22)

constitute the three-dimensional part of the Green's function for a vortex

element located outside the jet.

(2) |n]| <1, with the Vortex Element located Inside

the Jet

The solution of this case can be obtained by the same

method as given in the previous section, The final result, as can be veri-

fied, is
1 1
59, =77 I’(n)én{(l-éz)FZ(x, y-1, z) + ¢o} forr>1, (23a)
1 t’:_1 1 1
6@2 :Z.'I_T. F(n)an {FZ(X, y-n, Z) —?FZ(X, y--‘ﬁ' Z) + qu} for r < l; (23b)
= (oo}
e . (o) . > 24
0, == sin né T (k,'q)Kn(kr)sm kx dk forr>1 (24a)
0 wn_l o D
X ©
' 2 3 (j) o < l. 24b
Q; == sin n@ TY/(k, n)I_(kr) sin kx dk for r< 1; (24b)
: ’”n-l o " ’
and
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] ]
(I K 4K 1 ]I (kn)
2n nnn nn'n ’
= ' ~ (25a)
1-€ lk(InKn+KnIn)

(o) . :
Tn (k,n) = 61(1-(.2)

1
2kK K I (kn)

k
— 4 xn(ﬁ)}. (25b)

o)

() Zn{
Tk ) =€) — .
n 55, 1-€ k(I K +K_I

nn n

In (25) those Bessel functions whose arguments are omitted have the
argument k.

For a whole vortex line of distribution TY(y) ranging from y= -b1
to b2 and extending through a jet, the solution of @, is obtained im-
mediately by integrating the Green's functions of part (1) and (2). This
expression, however, will not be explicitly written down here, but will

be included in the final form of the total perturbation potential given as

follows. In summary,
(P(X» Y:Z> :(PI(Y» Z) + ¢2(x) er) (268.)

and with the notation ¢ = @, for r >1 and ¢ = ‘Pj for r <1, then

b \1
47T(p0: \ﬂ 4 T (T])F(X, Y= Z)dﬂ - € ZS F(T])F(X, ¥y Z)d’r]

y -bl -1

-1 b
2\ T'(-
+61<§b+§1 >_§’]_) F(x,y—%,z)dn
-b, n

(e 0]

2N . (® 't ePe, o)
+—Zsmn85‘ Kn(kr)sinkxdklig-b1+§l 1"(11)5n (k, n)dn

T
n=l 0

1
+ &1 T (n)Tf)(k, ul dn] X (26b)
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b -1 b
2 2
4wjigmnmnmwszndz<&%+i >NMN&wmﬂ®

L pin) 1 AN !
- el 5= F(x, y- 7 z)dn + — ) sin nb In(kr)smkxdk
-1 n =i 0 -b

b 1 .
+£2rmm?mmMn+&lnmﬂPMnmﬂ, (26c)

where

F(x, v, z) = Fy(y, 2) + F(x, y, 2) = —2 [1+ o . (264)
1 & ;Tzz (x2+y2+z?‘)1/2

By using the rule (21), it may be noted from (22) and (25) that

n+l

' ] (o, j) (o, §) _ (-yr#iplos §)
589 N, - m) = ()5t i ), T g ) = (PO D

ﬂence, if b, =b, and if T(-n) = I'(n), then the even terms in the infinite

1 2
series all cancel out; similarly, the odd terms vanish if T'(-m) = -T(n).

It therefore follows that, with b, = b

1 2’

(%, -y, z) = + ¢(x,y,2) for T(-7m) =+ I(n)
As Vj-—— Vo’ or p — 1, we have €€y — 0 (see Eq. 7), then only
the first term on the right side of (26b, ¢c) remains, which is known to be '
the lifting line potential in an otherwise uniform flow. On the other hand,

if Vo =0, Vj > 0, then €, =€, = 1; thus (26) reduces to the potential of

a lifting line extending through a free jet, that is, for r <],
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0 =3} TN Eyn ) -y Fony- 32y

-1 n
o (6 0]
1\ . sin kx
+ _77—2 ~ nsin no go In(kr)_k— dk
n=l
1
1 » 2kK K I (kn)
xg S +Kn(5)}-11'ﬂdn. (21)
-1 Li-k(IK +K 1) n N
n n nn

The solution @, for r>1 of course loses its meaning. In the general
case the terms with the factors € and €, represent the effect of the

jet on the potential (.

2. The Fourier Expansion for Circulation; Lift Distribution

The spanwise lift distribution, g(y), defined to be the local lift

on a unit span of the wing at station y, is given by the Joukowsky theorem

1y) = oV, Ty, (28)

where V =V for r>1 and =V, for r <1 The total lift on the
local o J
wing is then

p
ve{ aay=ef v Tiniey, (29)
span span

At the boundary of the jet (y = + 1), the lift distribution must be continuous.

Hence it follows from (28) that the conditions
I(1-0) = uT(140) and T(-1+0) = uI(-1-0) (30)

must be satisfied., These conditions show that the circulation T will

have a jump at the jet boundary. It should be pointed out here that the
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continuity of the wing surface at the jet boundary requires further that
the downwash be continuous at the boundary; this condition remains to
be enforced, (see Equations 45, 46).

In the following sections dealing with the single jet problem, we
shall limit ourselves to the case b1 = b.2 = b, i.e., a single jet centered

at the mid-span. It is convenient to divide the span into two regions:

R, I<lyl <b and Ry Iyl <l

and define the angles b ¥ (see Fig. 2) by

y =bcos g for 1 < |yl < b, (3la)
y =bcos y_ =cos y for iyl <], (31b)
so that
R afd 4 =0 at y =1 (31c)
o = Cos B—B 1= at y = L c

In order to account for the possible slipstream rotation of small
magnitude, the circulation ['(y) is not to be limited to even functions of
y. We now assume that T(y) can be represented by the following Fourier

series;

T(y) = 4VjI‘v(y) in region Rv’ v =01 (32a)
ZN
e
. (0) .
O(y) = 2 An sin mj;o in Ro’ (32b)
n=1
ZNI
ryy) =T (y) + Al 4 Z aWsinng in R, (32c)
n=1
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in which the numbers N_ and N, may be set as large as we wish, or
as practical. The expansion for I‘o(y) is suggested by the usual lifting
line theory. In (32c) the constant A(Ol) is introduced in order to satisfy
the jump conditions (30), the difference between I"l(y) and l“o(y) + Agl)

in |yl <1 is chosen to be a sine series since first, the half-period Fourier
expansion in 0 < Yy < is rather arbitrary and second, the sine series

is more amenable to analysis than the cosine expansion. Now application

of condition (30) to (32) yields

Lok
= (- 1) } ald) sin (241, (33a)
N
°
0 =Z A(Z(l) sin 2nf . (33b)
n=0

If there is no slipstream rotation and if the angle of attack is symmetric
about the mid-span, then A%?l) =A‘er3 =0 and hence (33b) is automatically
fulfilled.

Substituting (32) into (29) and integrating, we obtain

L =l Zwal0) 4 A

8pVi
v N9~l
(0) sin 2n sin 2(n+l) =
g “‘"”bz o +1{ = - Iar]) p] (34)
n=0

It is noted here that the terms with Afll) for n>1 and A(2(1)1) make no

contribution to the total lift,
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3, Downwash Distribution

According to the approximate lifting surface theory of Weissinger
the wing and its wake are represented by a bound vortex line located at
the quarter chord (which is also the center of pressure) together with a
system of trailing vortices as in the lifting line theory, and the flow is
then required to be tangential to the wing surface at the three-quarter
chord points. Let the quarter chord be located at x = 0 and let c(y)
be the half-chord length at y, then the downwash at the three-quarter

chord is

wly) = -8¢lc, v, 0)/0z . (35)

In carrying out the differentiation we note from (26d) that

Cc

1 9
F (c,y-m,0) = {l + } =5 G(y-mn, ), (36a)
i (r-m* L Liy-me /% i

9 2, ¢) = - 2 Gly- - (36b)
n n

where

Gly, ¢) = Gl(Y) o+ Gz(Y: c), (37a)

The function G(y, c) is decomposed as shown above such that Gz(y, c)
is regular for all y and for 'c > 0, the only singular part of G being
Gy(y). It canbe seenthat G(y) actually corresponds tothe value of G

at large distances behind the wing (the so-called Treffetz plane solution).
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By using (36), the integrals containing F_ in the expression for w can
be integrated once by parts. Doing so, we find that the terms evaluated
at the limits y =+1 and y =-b, b all vanish on account of condition

(30), relations (7a), and the condition that T(- b) =T'(b) = 0. Furthermore,

gz (K (er)sinne] o = = Zol K (kr)sin ne] , o =2 K (ky)

L,
y
which is valid for both y> 0 (6 =0) and y< 0 (6 =) provided the
continuation of Kn(kr) from 6 =0 to 6 =7 follows the rule (21). The
same result applies if Kn is replaced by In' In summary, we obtain
the downwash w(y) = w_(y) for 1< lyl <b and w(y) = wj(y) for lyl <1,

as follows

b ar ! d
4WWO(Y) = g . G(Y'm c) a’,:-] dT\ -€ ZS . G(Y"Tl, C)H%ﬂdrl

1 b
o
4 -b 1
© -1 b
2 “ . (o)
== Z % go K (ky)sin kc de—b + §1 S, (ky m)T'{n)dn

v=l

1
+§ T(f)(k,n)I‘(n) dn ] ; (38a)
-1

b -1 b
dr ¢ i dr
(IR 5 . Gly-m, e)gz dn - 62<S‘ . + )] )G(Y ™ ¢} g5 d

Q0
1 -1
1 dI‘ Y vg [S‘
- dn - e I (ky)sinkcdk
+61§_1G(y 11,c n f = Jlky)sin )

5) pon 1 .
; §1 st mTimyan + | T n)rm)dn] : (38b)
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Now we substitute the series expansion for T given by (32) into
(38), we note that some of the resulting integrals can be evaluated in

closed form. For example,

T
p cos nB d6 = sin ny
0 cos 0 - cos Y sin ¢ '’

s
d
. Smmg® = ctewn y™ i1t P 0 R o 1y >,

where P denotes the Cauchy principal value of the integral, and (y2_1)1/2

represents the positive branch of that function. After some rearrangement
we obtain the following expression for the downwash w(y):

a, for 1< !yl <b

sinny
2 3 (0){ 0.9 (%;-?;ROwLRl)-EZ[Pn(%;Rl)JrQn(%',.E;Rl)]

sin q;o n

- € bZ[Q L(byiR ) + A (by;EIE ;RO)]}

1/2
+(1- 62)2 { sgny)mrl [I}(’i a 1/2 1" +Qn(y;lc;Ro+R1)}

LY 00 -1 pb 1
—ZZZ %50 K (ky)sinke dk{g b+§1 sio)(k, M) T (n)dn +§1T£O)(k, n)Fl(n)dn}
n - =
=1

<

(39a)

be for y|<1

wj n (0 sinmpo v b
e =Z LINERP +Q (L2 R #R)-€,[P (LR 10 (£, 23R ]

sin Lpo n

J n=l
4 € bZ[Q (by;R.) + A _(by; ! iR )]}
1 n' 7’1 n' 'bec 'l
ZN1
(1){ sinndy [ 2 y!
+ nA + 0 (Ys iR +R )+€ -
HZ sIn Ha-v4Yé [1ea-y479 0
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-1

* ©
+ An(y;-IE;R0+R1)}} - fz Z -; So Iv(ky)sin kc dk {S-b
v=l

b . ) G
(3) (3)
+S; Sj(k.n)rohﬂdn+‘gl T) (h'ﬂrﬁn)dn} : (39b)

In the above equations the new functions Pn' Qn' Qn and 1% are defined

as follows:
5 T
oL 2 (" cos nb dé
Pn(L'RO) = ?S‘O + Jﬂ-ﬁ ———G_—COS ~ é ’ (403.)
m-B
2 cos nb d6
P (LiR)) = 2 Xp LUALE (40b)
2 P i cos 06 cos nB
QLiR,) = ?jo +§ﬂ_ﬁ—r.—z_;m a8, (41a)

my- 2 TP Cos 8 cos nB 46 (41b)
Qn(g’Rl) T 8 I-¢cos© ’

B /2
Q (GMR ) = 510 f (Lih;0)d8,  Q (LiMR)) = gﬁ G \;6)de, (42a)

2 n+l
eal = AN (cos 8 - {)cos nb ()" (cos 6+ {)cosnbd
£ (£;);0) __{1 + } (42b)
" T Wt [140%(cos 8- £)°] /2 14 [1425(cos 0412

Q (LGMR HR,) = Qn({,;k;Ro) + Qn(g;)\;Rl).

B v/ 2
A (LGNSR () =§O g, (LiX:0)d6, A (LMR)) =Sﬁ g,(Lix;0)de,  (43a)

(sec @8- t)cosnB®
+ 1+)\2(sec 0 - g)z] 172

)n+l (sec O+ {)cos nb }

+(- ‘
14[ 1+)\2(sec 6+ g)z] Ve

2
%mmm=%£
(43b)

A (LGNSR HR;) = A (GNR )+ A_(LAR).

The functions Qn( t, \) and ,/\1( ¢, \) are readily seen to be regular functions

for finite ¢ and N (thatis, for ¢ > 0). The functions P1 and Ql defined
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by the above integral representation can be integrated in closed form,

and P Qn (for n>1) can be expressed in terms of elementary functions
and P1 and Ql' For the purpose of numerical computation, however, it
is quite convenient to apply the modified Simpson's rule directly to evalu-
ate these integrals, For large values of n, the most significant contri-
bution from the integrand comes from the neighborhood of the points of
stationary phase. As to the analytic behavior of Pn and Qn' it is

noted that they all have a logarithmic similarity at the jet boundary

y =+ 1. Infact, it can be shown that if € is a small positive quantity,

then for y =1+ €,

o (%;Rl) = 4 59508 1006 4 O, Q (byiR ) oS BB 1og € + Ol ;

n T sin p Tb2sin B
and for y=1- €, (242
P (LR, )=- %j'n_n% log€ + O(1), Qn(by;Rl)E-ﬁ loge + Of1) .
(44b)

The singular behavior of these functions at y = -1 can be deduced from

the above results by using the relations

P(-LR) = ()P (GR), @ (-LR) = (1™ (R) . (44c)

Aside from the logarithmic singularities of Pn and Qn’ we
further note from (39) that the downwash w(y) also has square root
singularities at the jet boundary, which are proportional to (yz--l)—l/2
or (l-yz)_l/2 as they appear in the series Z nAgl). The strengths of
these square root singularities are seen to be independent of both the
span b and chord ¢, whereas the strengths of the logarithmic singu-
larities (see Eq, 44) depend on b, but not on ¢, This implies that all

these singularities are solely due to the effect of the slipstream boundary,
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. and therefore are inherent in both the lifting line and lifting surface theory.
Now we must ensure that the downwash does not become infinite

at the slipstream boundary if the wing surface is continuous there. In

order that the square root singularities of w(y) at y =1 and y = -1 shall

be eliminated, the relations

N1
Z (2ntall =0 (45a)
n=0

and N1
Z 2nall) =0 (45b)
n=l

must therefore be satisfied. Furthermore, in order to remove the

logarithmic singularities of w(y) at y =+ 1, the additional relations

N -1
0

Z (2n+1)Af2(r)1)Jrl cos (2n+l)p = 0 (46a)
n=0

and

N
0

Z 20al)) cos 2ng = 0 (46b)

n=l
must also be satisfied, Conditions (45a,b) and (46a,b) may be regarded
as four constraints on the coefficients Ago) and Aill) so that the down-
wash will be finite at the jet boundary.
It is convenient for the purpose of numerical computation to first
remove the singularities in the expressions for w, and W by applying
the conditions (45), (46), or, which is equivalent, by making in (39a, b)

the following replacements:
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ntl ['Y'"(Yz'l)l/zln b ntl 1-[ 'yl-(yz-l)l/zl !
y Z(B ) ’ ’
(y2-1)/2 gny (2172

-2(sgn y)

- i by —2 { i - (sgn y)n'l}
N e TR TR L '

% B . n+l -
Pn(%;Ro) by Pn(%;Ro) =%§0 [cosle - + cf)sl:) 3 (cos n®-cosnp)de,
) b
% 7r/2 _ n+l A
Pn(%,;Rl) by Pn(%;Rl) =%S‘ ! ¢ 24 — [ (cosnB-cosnB)de,
g cose-g cos 0+ 1’5'

. 0 _2 Bl cos @ (-)n“cos ¢
Qn(by’Ro) By, Qn(by’Ro) T §O [Fbycos ! l+tby cos @ (CEOREIAEEAE)

m/2 n+l
. SR e cos O (-) ""cos®
Qn(by,Rl) by Qn(by,Rl) == Svp ,:l—bycos at by cos® }(cos nb-cosnp)do .

With these substitutions the downwash w(y) is therefore regular every-

where over the wing. Although conditions (45a,b) and (46a,b) have

been once applied as shown in the above substitutions, they must still
be used in the calculation of the coefficients Aglo) and Afil) since no

coefficient is actually eliminated in this process.

4, Application of Boundary Conditions on the Wing

In order to take the effect of small slipstream rotation into ac-
count, we make the following simplifying assumptions,
1. The axis of the cylindrical slipstream is parallel
to the undisturbed main stream and passes through
the mid-chord point of the wing. The velocity of
the slipstream may have a rotational component

with distribution rw(r) about the jet axis, where
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r is the radial distance and w 1is the angular
velocity, w being taken positive if the rotation
is counterclockwise when viewed {rom the rear,
The rotation is assumed to be small, that is,

|wl

/V. << for r=1,
max’ " j

2. The effect of rotation is equivalent to a change
in the stream direction at the wing, giving rise

to a variation in the effective wing incidence
inside the slipstream, but is assumed to have

no effect outside the jet,

3. The rotational velocity of the slipstream does
not vary appreciably in the region over the wing.

Hence, if a(y) denotes the local geometric angle of attack at

station y of the 3/4 chord line, then the boundary condition that w(y)/vlocal

is equal to the local effective angle of attack may be written
wj(y)/VJ- = a(y) + yw(y)/Vj for lyl <1, (47a)
w (Y)/V, = aly) for 1< [yl<b. (47b)

Obviously w(-y) = w(y) so that yw(y) is an odd function of y, However,
in general practice the geometric wing incidence is symmetric about the

central span so that

a(-y) = aly) for lyl <b. (48)

Since in the conditions (45a,b) and (46a,b) the odd and even terms are
not coupled, it becomes convenient to decompose the problem into even

and odd parts as follows.
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a, The Even Part

The boundary conditions of this part reads

wj’ even(y)/Vj = a(y) for 0<y<l1 (49a)
Yo, even(y)/v0 = a(y) for 1< y<hb (49b)
where wj' o and W e venare respectively the even part of w‘i

and W which can be obtained directly from (39) by deleting the even

terms with n =2,4,6,...,2N. The two conditions (492, b) contain
. 0 1 ,
No+ N1 unknown coefficients A?fnil , AZ(n)+1 , which should be deter-

mined under the constraints (45a) and (46a). Hence we may take
(NO+ N, - 2) appropriate points in 0< y <b at which we apply conditions
(49a, b). For instance, we may choose (Nl-l) points in 0< y <1 and

(No-l) points in 1<y <b,

b, The Odd Part

For this part we have thc boundary conditions

wj, odd(y) = yuw(y) for 0<y<1, (50a)
Yo Odd(y) =0 for 1<y<hb, (50b)
where wj’ odd and W odd 2TE the odd part of wj and Wor which are

obtained from (39) by deleting the odd terms with n=1,3,5,..., . These
two conditions contain (N _+ N;) unknown coefficients A(o) and A(l) 5

o 1 2n 2n
which must also satisfy conditions (45b) and (46b). The same points
chosen for the even part may also be used for this part, Thus the problem
is now reduced to solving a system of (No + Nl) linear algebraic equations

in either the even or odd part.
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C. MULTIPLE JET THEORY

l. Geometric Configuration of a Wing and Multiple Jet System

We suppose that there are in general J pairs of jet slipstreams
which are symmetrically located with respect to the mid-span, so that the
total number of jets is 2J. All the slipstreams are assumed to be circular
cylinders, with their central axes parallel to the main stream and passing
through the center-chord points of the wing. The span of the wing is divided.
into (2J + 1) regions, denoted by Rv’ v=012...,2), which are defined
as follows (see Fig. 3).

R is the region on the span outboard of all the jets;

RZv-l is the region inside the vth jet pair, v =1,2¢,...,7J,
counted from the wing tip toward the center;
R, isthe region between the vth and the (v+l)th jet pairs.

The boundaries of these regions along the y-axis are marked by the points

0, b b,,b,,b_ =b.

b "b b ZJI"'I 21 1’ 0

PR 2J41°

“b_= -b, -b i

For every point y in the region R ~we define (v+l) angles, denoted by

bgr DY
y =b_cos g, &= 0,1,2...,v, for bv+1 < lyl < b (51)
At the point y = bv’ let
o = ccosib /b ), s=0,1,2,...,v v=0,1,...,21. (52)
s 8 v 78
Furthermore, all the jets are assumed to have the same radius, which is

normalized to unity, The centers of the vth jet pair are at y = a,
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and y = -2, where

v=12...,J. (53)

1
a4, %32 (blv-l+ va)' a_y= "ay

Finally, the geometric incidence of the wing and the slipstream rotation
of the jet pairs, if any, are both assumed to be small and symmetric about

the mid-span.

2, Velocity Potential of a Wing Extending through Multiple Jets

The image system of a vortex element due to a single slipstream
has been determined in Section Bl; it will be called the primary image
system for the problem of multiple jet slipstreams. The image system
of a vortex element generated by a set of multiple jets contains the images
of the primary and higher orders (i. e. the images of the primary system
and in turn their images) since it takes the images of infinite orders to
completely satisfy conditions (4) and (5) at all the slipstream boundaries,
In order to simplify the analysis, the image system of a vortex element
due to a set of jets will be determined by taking into account only the pri-
mary and secondary images and by neglecting the images of higher orders.
The final result of this approximation is expected to be accurate enough
for practical applications. In this manner the two-dimensional part of the
velocity potential can be obtained as follows.

a, For a Vortex Element I'(n)6n located at y =1 in R’v

(Outside All the Jets)

@, outside all the jets is due to I(n)ém at y = n plus

€
—l——zr(n)én et yi= a, +?]-l_a— , summing over £,{= -J,...J;
("I-al) {
PN inside the \th jet is due to (1-62)1"(11)611 at y=n1

€.(l-€.) !
plus —]:—-—2—1"(11)67] ath = aﬂ + T]}a , summing over £, # X,

(n-a,) 4

!
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b, For a Vortex Element I'(n)én located at y = n Inside

the Ath Jet

o, outside all the jets is due to (1-62)1"(7])671 at y=1

el(l-cz)
plus ————-z—I‘(n)b'q at y = a, + —— summing over !, # X\;
(ﬂ‘al) 1 1
(ﬂ.'l in the fth jet is due to (l- EZ)LF(T])GT] at y= 1,
for 1, # \;
@i\ in the \th jet is due to I'(n)én at y =n,
€ s 1 €)1-c,)° ]
plus - ——— I'(n)én at y = a)\+Fa— » Plus ———y T(n)6n at y=al+ e’
(n-a,) A (n-a,) £

summing over £, # \,

Again, like the previous case of a single jet, the three-dimensional
part of the potential can be decomposed into two components, of which one
part can be written down according to the same image system as given
above, and the rest can be expanded in a Fourier-Bessel series, Since
it has been found that the contribution of the Fourier-Bessel series is
very small, this part of the velocity potential will be constructed by
including only the images in the immediate neighboring regions, whereas
the images in the other regions and the higher order images will be neglected.
Thus, suimming up all the vortex elements along the span, we obtain the
following result for ¢. With ¢ = @, outside all the jets and ¢ = “’j, \
inside the \th jet (which will be taken to be one on the positive y-ax‘is),

we have
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1
F(x, y-a,- s z)}l"('q)dq
|

Lo P WPy —
477(p0=> g‘ +§ {F(X. y-n.Z)+Z 3
/W -
v=0 22y au4l (= (n-a)
I AP WPaya r e .
+(1—t2)z S\ X +Sb {F(x, y-n, Z)+Z (—n:a—)zF(x» Y'a!"n_a ’ z)} I'(n)dn
val "Pay.y YPay 1=-3 "3y S
, SNCO | 0 | 2y P2y-2 (o)
120 ) snme, § g pmniocarc {f 7 4§ 750N vea prtaen
£=-J m=l 21+1 29-1
bog-1 (o)
7 oy n-af)r‘(n)dn} , (54a)
b
2y
J 'b2v+l 2v
41rqu, k=(1-62)z &b +‘S‘b {F(x, y-n z)
v=0 2v 2v+l
I, ‘ : Bar-1
+Z (—-:_)2 F(x, y-a,- 11_‘.ijz,Z)}I‘(n)dn + ‘Yb F(%, y-n, 2)I'(n)dn
g=-7 '8, 2\
(&)
2 J LIPS ZV-]. l -bzv
+(1-¢,) {Z 5 F(x, y-m, z)[dn + g F(x, y-n, z)I'dn }
b ]
v=l 2v v=l "bz 1
(v#)) i
Pax-1 € ) ] €,(2-€ 2)2 ‘
- S\b {(——-—a—)z— F(X, Y"a)\‘ n_a)\r Z) 'Z ( A )ZF(X’y-al"ﬁ":a'—r Z}r(ﬂ)dﬂ
2n - (mmay gy (173 £
(#£\)
S oo " etnen g
+ 72 sin me)\S‘ Im(kr)\)sinkx dk {«g‘b + va Sm(k, nl—a)\)l"d'q
m=1 2041 P2)\-1
e 4)
+ g T,[]J[1 (k,n-a)\)r‘dn} , (54b)
b
2\
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where inthe second term of (5-4a), the signz denotes the sum over {
except when g =v for n>0 and f= -v for <0 (i.e., the vth jet
pair are deleted in the g-summation. Inthe above equations F(x,y, z)
: : (0) (i) (o) ~(j)

is glven in (26d) and Sm : Sm' Tm , Tm by (22) and (25). The

variables Ty 91 are defined by

y-al =r1cos OI' z =rlcos B!' ¢ =-J,...-1,1,...,J.

(54c)

3. The Fourier Expansion for Circulation; Lift Distribution

The spanwise lift distribution g{y) and the total lift L are again
given by (28) and (29). The circulation distribution T'(y), and hence the
local lift g(y), is assumed here to be an even function of y, that is,
T(-y) = T'{y). In order that the pressure and the local lift shall be con-

tinuous at the jet boundaries, y =b,, bZ’ ceey bZJ’ the following conditions

(similar to 30)

M v=13...2J-],
I‘(bv-O) ={ }I‘(bv+ 0) for{ (55)
1/p v=2,4,...27,

must therefore be satisfied. The continuity of the downwash at the jet

boundaries will be examined later in the analysis.

The circulation T'(y) of the present case is assumed to have the
following Fourier expansion
I'(y) = 4VjI"v(y) , for le~1 <lyl < b, v=01L2...,2J, (56a)
N, -1

T (y) =z al% sin (20t g, (56b)

n=0
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N -1
v

PV(Y) = Fv—l(y) + r\(ov) +2 Aé ll sin (2n+l)¢v, v=l, 2,...,2J]. (56c)
n=0

The last two equations may also be combined to give

v N -1
TV(Y) } { (5) } Aéill sin(2n+l)¢s} for v=0,1,2,...,2J, (56d)
5=0 n=0

Af)o) = 0 being understood. The above expansion gives [I'(y) an even
function of y, as clearly suggested by the fact that the downwash w(y)
will be symmetrical (even in the presence of slipstream rotation) about
the plane y = 0.

It should be mentioned here that a few different expansions for
T(y) have been examined by the authors by performing several numerical
programs on an IBM-709 inachine. One of these expansions is particularly
worth noting. This expansion assumes the same form as (56) except that
in (56c) the term I‘v_l(y) is removed. This reduces the number of terms

of the expansion in the inner regions R, vz 1. Thus the series with

(v)
coefficients A2 4

_alv4l v+l
by <yl <b, or 0sy < ﬁ(v ) and 7- 55} )< Y, € 7. Strictly

speaking, these series in this type of expansion are not Fourier series

is assigned only to the region Rv’ in which

since the set of functions sin (2n+l) y, are not mutually orthogonal over
the region Rv' It has been found that this type of expansion induces
numerical instability in the computing program. The expansion (56), how-
ever, has been found satisfactory.

Now application of conditions (55) to (56) yields

(k-1) 5
- ) (s) . (v)
A {(.ﬂl)f{% [ale)y A2 ) sin (2n+1)p!" ]} (57)

v=13...,2T-]
for{
v=24...,2],
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in which AS)O) = 0. Thus the total number of the arbitrary coefficients

(58)

The total lift L is obtained by integrating ((y) along the span,

b 2J b
L l gov T(y)d "y
z T2 . local yy:""z y ¥y
v avy o SO

L Py
pa-w) LT, ey
~ vb
v=l “2v

On substituting (56d) in the above integrals, and making use of b -b

(which is the diameter of the jet), we obtain

= J 2v-1l .
8va2 -u) b (A Al ) ) {ZA(OS’+-§ ale)p pl2v). gl2v-1)y
J v=0 g
N -1
bs 5 () (s) sin Znﬁ(SZV) e ZrIB(SZV-I)
+'2—[Z (A timAs ) _
n=1
(5) sin stﬁgZV)_ sin 2N, p(S?.v-l)
- AZNS"]- ZNS } (59)
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4, Downwash Distribution

Again we let c(y) be the half-chord length of the wing at station
y. Then the downwagh at the three-quarter chord can be derived from

the solution (54) by differentiation,

__ 90 % - .
wo(y) = - -a-cho(c,y, 0) for bZ)\+l< Iyl < bZ)\’ A=01...,7;

__ 0 -
wJ.' )\(y) = _Hq)j, )\(c,y,O) for bZ)\< lyl < bZ)\—l’ x=142...,J

On integration by parts of those integrals in the expression for dgp(c,y, 0)/0z
which contain F _, and by making use of (36), (37) and {7), we find that
those terms containing G(y-10),when evaluated at various limits of integration,

all vanish by virtue of (55) and (7a), and we finally obtain

J b
dd Bk d
4w (y) :E (1~6S 62)5 [Gly-m c) - Glytn, C)]a%dn
v=0 bv+1
I
i 1 1 d
_ el> E g [Gly-a,- 725 c)- Gly+a ,c)]a%"dn
v=0 12-7 Pauyl “1 “
l J_ 1 V-—l 1 ar
'tl(l € Z Z X [G(Y‘ 1- n-a ’ C) = G(y+a1+ n-af’ C)]'a'ﬁ d"l
v=l g=-7J
(£#v)
bamw, (6la)
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2 J J
RS U G 1 1
47"”0()’) = —FT Z Z I‘(va +0)[G(Y"al' b -a" c) - G(Y+al+5;;'?l' C)]

vzl g=-J v 1
(1£v)
J~ -
2
-61 Z Z r(bzv_1+0)[G(y-al- G—I—_a— N C) - G(Y+al +F—1Ta_ ) C)]
=] = 2v-1 7y 2v-1 "4
v=l g=-J
(£#v)
b
o K (k(y a )) 24
Z > S’ sin ke dk {g
£=-J m=l b2!+1
S SIS
| st n-aran+ | 10 mea yrant
b *'b
27-1 21

i 1
7rwj’ \(y) = (1- EZ)Z (l-ﬁsdde 5) Sb [Gly-n,c) - G(y+n, c)] %dn
v=0 v+l

bZ)\,-l 2) 1
+ t’:lg [ElG(y-n, c)+(2- 61 G(y—a)\- A c)
by A

2, 1 4l
- (1“61)2 G(‘/‘al' ﬁj— n—)] a'ﬁ dn

Zu
'61(1 EZ)E Z S‘ G(Y a "—_‘—»C) - G(y-a 1 n+a »C)]
v=0 g=-J 2v+1
(2#))
4w (61b)
+ -WWJ-’)\ ’
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e, )= )> [T(b,\#0)Gly-a, - e o)

= AN |
(£#))
“T{byy 1 +0)Gly-a - g , c)]
2\-1"%y
33
1 1
+61“+61)Zi }E F(bzv+0)[CKy—a1- b ¢ - Gly-a tp—p v ¢)]
vel peed 2v g 2v ¢
(£#),v)

1
l 62) }I Z r‘(b +O)[G(y al- . _a ,C) - G(y-al'i’wl ,C)]

v=l g=-7J
(22N, v)
® o 1 (K b
AN mikly-2,0)
- 7r m —)73——— sSin kC dk
el A bantl
"oz ) ool
+ S‘b Sm(k, T]—a)\)I1 dn + Sb Tm (k, n—ax) Fdn} .
2)-1 2\

In (6la) and (61b), the notation ésdd is defined by 6sdd =1 if v is an

odd integer and =0 if v is an even integer. In the expressions for wi
and w; \! the terms with G(y + 2, i (bv'az)-l’ c) arise from the fact that
the reflections of the image systems are not complete; these terms will be
removed if all higher order images are included in the solution of ¢. How-
ever, it is noted that these G functions are regular in their respective
regions,and their magnitudes, with their multiplication factors (depending

on p, €; or 62) accounted for, are generally very small. Furthermore,

it has beer found from the numerical results that the contributions of the
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. * *
Fourier-Bessel series in W and wj are also small. Hence W,
’

*
and w, \ are rather unimportant compared with the remaining terms
’

in the expression for w_ and w, ..
0 Jr N

Now from (51) and (56d) we find

d d
.df_;dn I 4y = Z > (2n1)A 8] cos (zntlpy dy,  (62)
8=0 n= 0
for bv+l< |y|$b

v=01L...,2J

Using this expression for I“,d'q and (36) for G, we find that some of the
resulting integrals which contain Gl(y-'q) and Gl(y+'q) can be evaluated
in closed form. The final result is given in the following. Since w(y) is

evidently an even function of y, only the result for positive y will be

given here.

de Outside the JetS, bZ)\,+1< Yy = bZ)\, A= 0'1,000 ’ J

\ 2Ng-1 5)
wo(y) , nAn sin ny_
v, Z >: b Tsin g,

] 8=0 n=l, 3,...

2N_-1
® Al [y - iy )Pan

2J
] 2(1-6‘){)2 (1-6(52“1) €,) z - 2
s=2\+1 n=l, 3,... ° 1'(y/bs) -1

2N -1
J 2v-1 s nA(s) )( :
(A1) (2N\41) (s i
- EZZ Z Z —-B———s (1- 6 )[Pn ('B}:S"sz_l)
v=l s=0 n=l, 3,
+ PR,
n E T 2v-l
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(2Npy4171) Als) 2]
J
+€,(1-53) Z D pleMl (g Z R}
K 2\ 41 2\41 ¢
n=], 3,... =2\+2
2J
(2)\+1) , 5
+ P T EL ; R))]
241 5,
23 , 2N.-1

(s) -y D
+Q, (Ef;—C;RV)]

- 5 b Nl
dd
'612 (1-5° EZ)Z (1_63dd6(£v+1)/2))2 Z nA(ns)[Q(:)(y;al;RV)
v=0 £=-J §=0n=l, 3, ...
w(y)
+off’(-y:af;Rv)+A§f’(y:a1;Rv)+Aff’(-y;al;Rv)]+—v—°j . (63)

b, Inside the \th Jet, b, <y =b A=1,2,000,J

2\ 2\-1’
o . 2N -1
C nA(s) sin ny
=) n S
Z }J bs 81n lps
8=0n=l, 3,...
2N _-1 —-
S N nAfls) [v/bg - \l(y/bs) 11"
_2(1-e2)2 (1-¢ 457 EZ)Z =
5=2\ n=l, 3,... ° l(y/bs)z -1
N Ale) " 2\-2 N 27
2 n s), v . s i
-elz Z T[Pn (FS'YZ RV)+Pn (.bL,zRV)
§=0 n=1,3,... ° v=0 5 v
A (2Napar~t) (5) 23
2\
¥ Pff”(-%’-;? R )] - €,(1-€,)(1-6) ) Z —b-ﬁ—[Pf1 )({—ZI ;Z R
s 20 g y=2)+1
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2N -
2] J 2v s als)
e R g Z Z > T“—(l-sﬁaf;")
s & ~ 8
v=2)¢l =08=0 n=l,3,.
X [p(e)( LR, )+ P(s)(- R,,)]
ZN -1 %
(8)
- (1- ez)z (1-82%% Z)Z 2 “An Q(e)(bx_
s=0 n=l, 3,.
ZN -1
2\-1 (8)
b = nA b
(s) s 2 (s), y .8,
+ Q) (-BY;"C‘"RV)“%Z 2 —I:S_QnB(BL'?S'sz-l)
§=0 n=I, 3 8
2x-14Ng-
_4(8) ¢2_gM(o_¢l (8), ... .
'612 Z A Z{ 1'51(2'(‘1”[Qn yia iRax1)
8=0 n=l,
+A£18)(y;a1;R2)\-1)]} (l EZ)Z Z Z nA(S)Z (1-6 )
v=0 5=0n=l,3 1=-7J

x[Qi}s)(y;al ;RZV)+Q(nB)(-y;-a!;RZV)H\(]S)(Y;aI ;R2v)+A$18)('Y"a1‘R2v)]

%
w, \(y)
J M (63b)

T

J

) % *
In the above equations, W and w,

i\ are given in (61); 6:1 are the

Kronecker deltas,

m

§'=1if m=n and 6 =0 if m# n; (63c)

and the functions P, Q, §, A are defined as

Q(VH)
(S) (y/b R ) = _72?5 v cos nfde ’ (64a)
5 cos O - y/bS
F3£;v+1)

(b cos 8 -a_)cos nt db
(s)o. . _ 2 s ]

Q ( a :R» )“ y 64b)
n Ry ﬁg(") 1+ (bycos 0-2a)a,-y) (
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b, 2 o o {¢c - v vy/b_ )eos nt D
T)L _S..; :_1.(_.5) \ 5 » (C"’-)
5 G mhe T Jav) 2 1/2
B [l+(—-—)(cose-B—)]
(s) | LA (E'?che'_ 8y y)cos n8 d8
A®(y;a iR ) = . (64d)
n T 2 S@(S") ) 1 /2

1

The strongest singularities which appear in the expression (63)
for w(y) are the square root singularities at y =b_, s8=1 2, ..., 2J.
In order that these singularities at the jet boundaries be removed, the

following 2J relations

2N _-1
} nal®) =0, 5=, 2, ..., u (65)
3,3

must be satisfied.

Further, it is noted that the functions P(ns) and les) may have
logarithmic singularities at the jet boundary. These singularities are

listed below.,

. In b <y<hb

2\ +1 )‘-=011:--0;J’

2\
by +€

(s) , Pttt o (s) o

Pn ' {5 3 Baap) ® 00, gy pn iy iRy

, cos np2h 1

¥ = T log €, (66a)
sin ﬁs'

P(S)(F- Ron-1) &by (s)(b \" Eiay iRy,

2
= -2 _._TS log € ; (66b)
8




2, In bZX< W B bZX-l’ A=12,.44,J,
b,, +€
(8), 2\, - (8) iy
P Y -5;— 'sz) = bsQn (b2x+e’ax’R2)\-l)
, co8 nﬁg)‘
= = log €, (66c)
sin ﬂs
b -€
(8) , "2X\-1 ~ (s) e T
o (=5 Banog) % PgQy by 16 520iR )
, cos nﬁi)‘-l
= log € . (664)
n -
sin [38

To remove these singularities we impose the following conditions

1

ZN -1

h-2 (s)

2 Z T— cos nﬁ /sin Bs)\_l =0, \=12,...J; (67a)
8=0 n=l,3,...

gl LU nA(s

Z ; _5_ cos nﬁ /sinﬁ A=12,... 7. (67b)
8=0 n=L3,...

By making use of the conditions (65) and (67) we may introduce in (63)

the following substitutions:

R Y L T2 AR Y o PZLEULEY (251,

(8) , v . *(s) vy .
e (Ig Rl By Py (‘B;’RZMI)
2Z\+2
2 ﬁs cos nb - cos ﬁZHI
2
p

2h+1 cos 0 - y/bs
8
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) Y. % X
pfls(BLB' Ron-1) bY %(B)(BZ;'RZ)\-I)

2\
S. ﬁs cos nB- cos nps)‘

pg)\-l co3 0 - y/ES

2

= = dae,

(8) .y . *(8) o
Q lyiayiRa\) by Q7 yiay 1iRo))

2htl
[38 (bscos e-aHI)(cos n@-cos nngl) T
’

\S\
2)\

%
Qt®hyia ir,,) by Q1% Nyia R )
BZM-I >
2 g‘ 5 (bgcos 6 - a,)(cos n - cos nf_
T

AN
s

M

de

B 1+ (bscos 0 - a)\)(ak -y)
together with similar substitutions in b?_)\ <ys bZX-l’ N & L2 R &
After these substitutions are made, the downwash w(y) then becomes

bounded everywhere over the wing. There are 2J conditions of the

form (67) in total,

5, Application of Boundary Condition on the Wing

The same assumptions for the effect of slipstream rotation as
stated previously in Section B4 will be retained for the present case of
multiple jets. Since w(y) is even in y, the boundary condition need be
applied for positive y only. Hence if a(y) is theA local geometrical
angle of attack at y of the 3/4 chord line, then, by the Welssinger

method, the required boundary condition becomes
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Woly)/Vy = paly) for by <y sby, A=01...,J, (68a)

(Y'ax)w(y'ax)
wj’ X(Y)/Vj = Q(Y) + ‘—Vj for b2k< Yy < bZ)\"l ’

N=13,...,J.  (68b)

where w is an even function of its argument and represents the slipstream
rotation, the convention for the sign of w being already specified in Section B4,
2J
Here we have Z N_ unknown coefficients A(;) which must
$=0 5 n+l
also obey the 2J constraints (65) and 2J constraints (67). Therefore we
may choose appropriately (ZNS— 4J) points on the 3/4 chord line at which

we apply condition (68).
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[1I., COMPUTATIONAL RESULTS

The problem of verifying the theory is two-fold, First, an in-
volved procedure for electronic machine computations must be developed
to produce numerical results to apply the theory, Second, experimental
data providing spanwise lift distributions for applicable wing configurations
is required,

Major strides were taken in the computational programming of
the theoretical multiple jet relations developed in this paper. This pro-
gram was designed for the IBM Type 709 electronic computer, and
applied at the UCLA facility, It should be recognized that the mathematical
formulation and the computing procedure are highly interrelated. In de-
veloping the mathematical theory, the approach and selection of system
coordinates must be compatible with the available computing techniques,
However, all of the computational difficulties cannot initially be foreseen
and this results in various modifications in the mathematical form of
presentation during the development of a satisfactory computational
procedure,

The mathematical formulation presented in this paper yielded
slight numerical inconsistencies on several occasions., It is felt, how-
ever, that the trends exhibited by the computed results are reasonable,
An improved formulation which shows promise of relieving some of the
numerical difficulties is presently under investigation. Much of the com-

putational program utilized in this paper would be applicable to the new

formulation.

Suitable experimental data for verification of the theory is sadly

lacking. In September of 1959, NASA (Ames Research Center, Moffett
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Field, Calif,) published an account of force measurements of a multi-jet
configuration(lé). Limited spanwise measurements were made during

the test, the data for which was not published in their report, These

Ames spanwise measurements were obtained upon request but were not
suitable for correlation with the theory, Nevertheless, the basic geometry
of their model was employed in an example computation based on the
present theory,

The Ames test was not primarily concerned with spanwise loading
and thus only a limited number of spanwise measurements were taken,

The propeller slipstream velocity over the wing was also not measured,
The effect of the fuselage, engine nacelles, and asymmetric loading
between the right and left wing panels (spanwise measurements were made
on the left wing panel only) also invalidate any spanwise comparison with
the theory, Also integration of the Ames spanwise lift data did not agree
with their total lift measurements for reasons enumerated above.

Fig, 4 presents theoretical curves for the spanwise lift distribution
of the selected wing-jet arrangement (similar to Ames configuration), The
aspect ratio is 10 and the taper ratio is 0. 5. The angle of attack is 6° at
the root chord and 0° at the tip. The spanwise location of the jets (pro-
pellers) is shown on the sketch at the top of the figure, The contribution
of the Bessel function terms for this computation was found tobe small and
was accordingly disregarded,

The most significant trend observed in the theoretical curves is
the increase in the local lift coefficient near the wing mid-span., This
result is of primary importance for structural wing design,

The curves also show that lift is carried across the narrow strip
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between closely spaced jets, Also, when the jets are close together,
their effects combine to produce a single peak, Obviously, if the jets
are a sizeable distance apart, two distinct peaks will appear,

The maximum local lift coefficient occurs near the jet closest
to the mid-span. This is reasonable since the local lift of the wing
without jets increases toward the center, The washout twist distribution
also amplifies this effect, The curves also show a significantly higher
local lift in the region of the outer jet, particularly for the higher jet
strengths (lower p values),

Significantly, there is only one peak in each of the curves and
this peak shifts towards the wing mid-span for high p values, This is
explained in terms of the relative strength of the wing and jet, i.e,, the
wing alone has its maximum local lift (peak) at the mid-span while the
jet creates a peak at the jet center, Thus, the jet tends to pull the peak
toward its center while the wing tends to pull the peak toward the wing
centerline, resulting in a peak in between, Logically, this peak shifts

toward the wing centerline for weak jets (high p values).
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IV, CONCLUSIONS

Lifting surfare theory has been generalized to establish a foundation
from which many problems concerned with the non-uniform aerodynamics
of wing-jet interaction may be solved. This generalization has been applied
to the case of a wing extending through multiple jets,

The multiple jet formulation was programmed on the IBM 709
electronic computer, Duetosome slight numericalinconsistencies animproved
formulation is presently under investigation, However, the trends indi-
cated by the present formulation are considered to be valid,

The spanwise lift distribution of a wing extending through four (4)
jets was computed (Fig, 4). A large increase in lift inboard and within
the jets (propellers) was obtained with strong jets (low p values), Sig-
nificant increases in lift outboard of the jets are also apparent,

These results provide a basis for optimizing multi-jet wing-
propeller configurations, for example by determining the lift distribution
of a series of wings extending through a systematic family of multiple jet
arrangements, As demonstrated in Ref, 2 the optimum planform for a
wing extending through a single jet is finite and ¢ similar result is antici-
pated for multiple jets,

The large lift magnification noted above resulting from the wing-
propeller interaction has wide applicability in the area of V/STOL aircraft,

particularly ir: the potential of large improvements in STOL capabilities,
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V. RECOMMENDATIONS

Analytical solutions to the remaining two phases of the four phase
fundamental program outlined in the Foreword are under way at the present
time, With the generalization of the lifting surface theory presented in
this report, the analytical solution of many secondary problems associated
with the aerodynamics of wing-propeller interaction can readily be solved,

It is recommended that the analytical program be expanded to
encompass further secondary factors so that Rethorst's basic solution
and the generalization of this lifting surface theory presented in this
report are fully exploited,

The most pressing immediate concern is the need for suitable
multi-jet experimental data for correlation with the theory, and the need
for a computational program of sufficient scope to delineate optimum
configurations and gain an insight into all the ramifications of the analyses,

It is recommended that an intensive experimental investigation
of spanwise lift distributions for wings extending through multiple jets
be conducted, The experimental program should encompass all the
configurations such as the highly cambered wing, tili wing, etc,, con-
sidered in the complete analytical program as outlined in the Foreword,

It is also recommended that the electronic computing prograxh be
greatly expanded to fully utilize the analytical results, It is emphasized
that the computational program must proceed concurrently with the
analytical development since the mathematical formulation must be com-

patible with computational programming techniques,
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